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Required reading: “Networks, Crowds, and 
Markets,” Chapter 13.1 — 13.4, 14.1 — 14.3, 
14.6



Information networks and the Web
‣ Logical relationships among pieces of information 

‣ Best example: the Web 

‣ 1991: Tim Berners-Lee at CERN (Switzerland) created the Web 

‣ provided an easy way to make documents — web pages — for the 
world to see 

‣ view these pages using browsers 

‣ it is based on the idea of connecting these pages using links
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The idea of links is both inspired and non-obvious
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There are many ways of organizing information: 
classification (library), series of folders (files), or just 
alphabetically (phone book)



Modeling the web as a directed graph
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Objective: create a “map” of the web 
But how?



Strongly Connected Components
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Strongly connected component: a subset of 
nodes such that (1) every node in the subset 
has a path to every other; and (2) the subset 
is not part of some larger set in which every 
node can reach every other.





Now we can build a global map of the 
Web, using strongly connected 
components (Broder et al. [1999])



A giant strongly connected component



Can there be a second giant strongly connected 
component?
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Not really — it’s too fragile
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The bow-tie structure of the web
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346 the structure of the web
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nodes
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Figure 13.7. A schematic picture of the bow-tie structure of the Web (image from Broder
et al., [80]). Although the numbers are now outdated, the structure has persisted.

2. OUT: nodes that can be reached from the giant SCC but cannot reach it – in other
words, nodes that are “downstream” of it.

Figure 13.6 forms a useful example for trying out these definitions. Although the
network in Figure 13.6 is much too small for any of its SCCs to be considered “giant,”
we can imagine its largest SCC as the giant one and consider how the other nodes
are positioned in relation to it. In this case, the pages “I’m a student at Univ. of X”
and “I’m applying to college” constitute IN, and the pages “Blog post about Company
Z” and the whole SCC involving Company Z constitute OUT. And this is roughly
what one intuitively expects to find in these sets: IN contains pages that have not been
“discovered” by members of the giant SCC, whereas OUT contains pages that may
receive links from the giant SCC, but which choose not to link back.

Figure 13.7 shows the original schematic image from Broder et al., depicting the
relation of IN, OUT, and the giant SCC. Because of the visual effect of IN and OUT as
large lobes hanging off the central SCC, Broder et al. termed this the “bow-tie picture”
of the Web, with the giant SCC as the “knot” in the middle. The actual sizes of the
different pieces shown in the figure come from the 1999 AltaVista data, and are long
since obsolete – the main point, which has remained true over time and across different
domains, is that each of these three pieces accounts for a significant fraction of the total
number of nodes.

As Figure 13.7 also makes clear, there are pages that belong to none of IN, OUT, or
the giant SCC – that is, they can neither reach the giant SCC nor be reached from it.
These can be further classified as

3. Tendrils: The “tendrils” of the bow-tie consist of (a) the nodes reachable from
IN that cannot reach the giant SCC, and (b) the nodes that can reach OUT but
cannot be reached from the giant SCC. For example, the page “My song lyrics” in



How do we find web pages using search?
‣ Up through the 1980s, very few people cared about information retrieval 

(search) 

‣ librarians 

‣ patent attorneys 

‣ They are trained to formulate effective queries, and the documents they 
were searching for were written by professionals 

‣ research articles 

‣ court documents 

‣ U.S. patents
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The Web is entirely different
‣ Both search users and web page authors are amateurs 

‣ Scale is really large 

‣ Highly dynamic nature of the content to be searched 

‣ Some of the authors may even optimize their content for a search 
engine 

‣ An industry called “Search Engine Optimization” 

‣ Millions of dollars on the line
15



When I search for a key phrase, what do I need?
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University of Washington
University of Waterloo

University of Wisconsin
University of Windsor

University of Winnipeg
University of Wyoming

?



Basic idea: let the links “vote”
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Using links as more than simple “votes”
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Searching for “good museum”
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Link-based ranking with hubs and authorities
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Key idea: 
voting again 
and again



Link-based ranking with hubs and authorities
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Key idea: 
principle of 
repeated 
improvement



But why stop here?
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Let’s make it more formal
‣ Two kinds of quality measures for web pages 

‣ Authority score — Auth(p): level of endorsement 

‣ Hub score — Hub(p) : quality as a list
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Authority update rule: Auth(p) = sum of hub 
scores of all pages that link to p.

Hub update rule: Hub(p) = sum of authority 
scores of all pages that p points to.

Divide all scores so that they add to 1.



Using adjacency matrices to represent a graph

‣ view a set of n pages, 1, 2, …n, as a set of nodes in a directed graph 

‣ n x n matrix M: Mij is equal to 1 if thee is a link from node i to node j
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Figure 14.11. The directed hyperlinks among Web pages can be represented using an adja-
cency matrix M: the entry Mi j is equal to 1 if there is a link from node i to node j ; otherwise,
Mi j = 0.

Hub and Authority Update Rules as Matrix–Vector Multiplication. Let’s consider
the Hub Update Rule in terms of the notation we’ve just defined. For a node i, its hub
score hi is updated to be the sum of aj over all nodes j to which i has an edge. Note
that these nodes j are precisely the ones for which Mij = 1. Thus, we can write the
update rule as

hi ← Mi1a1 + Mi2a2 + · · · + Minan, (14.1)

where we use the notation “←” to mean that the quantity on the left-hand side is
updated to become the quantity on the right-hand side. This is a correct way to write
the update rule, since the values Mij as multipliers select out precisely the authority
values that we wish to sum.

But Equation (14.1) corresponds exactly to the definition of matrix-vector multipli-
cation, so we can write it in the following equivalent way:

h ← Ma.

Figure 14.12 shows this for the example from Figure 14.11: the authority scores
(2, 6, 4, 3) lead to the hub scores (9, 7, 2, 4) via the Hub Update Rule. Indeed, this is an
example of a general principle: if you’re updating a collection of variables according
to a rule that selects out certain ones to add up, you can often write this update rule as
a matrix–vector multiplication for a suitably chosen matrix and vector.
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Figure 14.12. By representing the link structure using an adjacency matrix, the Hub and
Authority Update Rules become matrix-vector multiplication. In this example, we show how
multiplication by a vector of authority scores produces a new vector of hub scores.



Hub update rule as matrix multiplication
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The authority update rule as matrix multiplication
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Specifying the Authority Update Rule in this style is strictly analogous, except that
the scores flow in the other direction across the edges. That is, ai is updated to be the
sum of hj over all nodes j that have an edge to i, so

ai ← M1ih1 + M2ih2 + · · · + Mnihn. (14.2)

This too corresponds to a matrix–vector multiplication, but using a matrix where the
entries have all been “reflected” so that the roles of rows and columns are interchanged.
This can be specified using the transpose of the matrix M , denoted MT and defined
by the property that the (i, j ) entry of MT is the (j, i) entry of M; that is, MT

ij = Mji .
Then Equation (14.2) corresponds to the update rule

a ← MT h.

Unwinding the k-Step Hub–Authority Computation. Thus far we have discussed
a single application of each of the update rules. What happens when we perform the
k-step hub–authority computation for some large value of k?

We start with initial vectors of authority and hub scores that we denote a⟨0⟩ and h⟨0⟩,
each of them equal to the vector whose coordinates are all 1. Now, let a⟨k⟩ and h⟨k⟩

denote the vectors of authority and hub scores after k applications of the Authority and
then Hub Update Rules in order, as in Section 14.2. If we simply follow the preceding
formulas, we first find that

a⟨1⟩ = MT h⟨0⟩

and

h⟨1⟩ = Ma⟨1⟩ = MMT h⟨0⟩.

That’s the result of the one-step hub–authority computation. In the second step, we
therefore get

a⟨2⟩ = MT h⟨1⟩ = MT MMT h⟨0⟩

and

h⟨2⟩ = Ma⟨2⟩ = MMT MMT h⟨0⟩ = (MMT )2h⟨0⟩.

One more step makes the pattern clear:

a⟨3⟩ = MT h⟨2⟩ = MT MMT MMT h⟨0⟩ = (MT M)2MT h⟨0⟩

and

h⟨3⟩ = Ma⟨3⟩ = MMT MMT MMT h⟨0⟩ = (MMT )3h⟨0⟩.

Proceeding for larger numbers of steps, then, we find that a⟨k⟩ and h⟨k⟩ are products of
the terms M and MT in alternating order, where the expression for a⟨k⟩ begins with MT

and the expression for h⟨k⟩ begins with M . We can write this much more compactly
as

a⟨k⟩ = (MT M)k−1MT h⟨0⟩
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Unwinding the k-step hub-authority updates
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and

h⟨k⟩ = (MMT )kh⟨0⟩.

So that’s a direct picture of what’s happening in the k-step hub–authority compu-
tation: the authority and hub vectors are the results of multiplying an initial vector by
larger and larger powers of MT M and MMT , respectively. We now consider why this
process converges to stable values.

Thinking About Multiplication in Terms of Eigenvectors. Let’s keep in mind that,
because the actual magnitudes of the hub and authority values tend to grow with each
update, they only converge when we take normalization into account. To put it another
way, it is the directions of the hub and authority vectors that are converging. Concretely,
what we will show is that there are constants c and d such that the sequences of vectors
h⟨k⟩

ck
and

a⟨k⟩

dk
converge to limits as k goes to infinity.

We talk first about the sequence of hub vectors, and then we consider the authority
vectors largely by pursuing a direct analogy to the analysis of hub vectors. If

h⟨k⟩

ck
= (MMT )kh⟨0⟩

ck

is going to converge to a limit h⟨∗⟩, what properties do we expect h⟨∗⟩ to have? Because
the direction is converging, we expect at the limit that the direction of h⟨∗⟩ shouldn’t
change when it is multiplied by (MMT ), although its length may grow by a factor of
c. That is, we expect that h⟨∗⟩ should satisfy the equation

(MMT )h⟨∗⟩ = ch⟨∗⟩.

Any vector satisfying this property – that it doesn’t change direction when multiplied
by a given matrix – is called an eigenvector of the matrix, and the scaling constant c is
called the eigenvalue corresponding to the eigenvector. So we expect that h⟨∗⟩ should
be an eigenvector of the matrix MMT , with c a corresponding eigenvalue. We now

prove that the sequence of vectors
h⟨k⟩

ck
indeed converges to an eigenvector of MMT .

To prove this, we use the following basic fact about matrices. We say that a square
matrix A is symmetric if it remains the same after transposing it: Aij = Aji for each
choice of i and j , or in other words A = AT . The fact we will use is the following
[268]:

Any symmetric matrix A with n rows and n columns has a set of n eigenvectors
that are all unit vectors and all mutually orthogonal; that is, they form a basis
for the space Rn.

Since MMT is symmetric, we can apply this fact to it. Let’s write the resulting
mutually orthogonal eigenvectors as z1, z2, . . . , zn, with corresponding eigenvalues
c1, c2, . . . , cn, respectively, and let’s order the eigenvalues so that |c1| ≥ |c2| ≥ · · · ≥
|cn|. Furthermore, to make things simpler in this explanation, let’s suppose that |c1| >

|c2|. (This essentially always happens in link analysis applications; later we explain
the small changes that need to be made in the discussion if this assumption does not
hold.) Now, given any vector x, a good way to think about the matrix–vector product
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Figure 14.13. The flow of PageRank under the Basic PageRank Update Rule can be represented
using a matrix N derived from the adjacency matrix M: the entry Ni j specifies the portion of
i ’s PageRank that should be passed to j in one update step.

the sequence converges may now depend on the choice of the initial vector h⟨0⟩ (and
particularly its inner product with each of z1, . . . , zℓ). We should emphasize, though,
that in practice, with real and sufficiently large hyperlink structures, one essentially
always gets a matrix M with the property that MMT has |c1| > |c2|.

Finally, we observe that even though this whole discussion has been in terms of the
sequence of hub vectors, it can be adapted directly to analyze the sequence of authority
vectors as well. For the authority vectors, we are looking at powers of (MT M), and so
the basic result is that the vector of authority scores converges to an eigenvector of the
matrix MT M associated with its largest eigenvalue.

B. Spectral Analysis of PageRank

The analysis we’ve just seen emphasizes how eigenvectors arise naturally as the limits
of repeated improvement. We now discuss how PageRank can be similarly analyzed
using matrix–vector multiplication and eigenvectors.

Recall that, like hub and authority scores, the PageRank of a node is a numerical
quantity that is repeatedly refined using an update rule. Let’s start by thinking about
the Basic PageRank Update Rule from Section 14.3 and then move on to the scaled
version. Under the basic rule, each node takes its current PageRank and divides it
equally over all the nodes to which it points. This suggests that the “flow” of PageRank
specified by the update rule can be naturally represented using a matrix N as depicted
in Figure 14.13: we define Nij to be the share of i’s PageRank that j should get in one
update step. This means that Nij = 0 if i doesn’t link to j , and otherwise Nij is the
reciprocal of the number of nodes that i points to. In other words, when i links to j ,
then Nij = 1/ℓi , where ℓi is the number of links out of i. (If i has no outgoing links,
then we define Nii = 1, in keeping with the rule that a node with no outgoing links
passes all its PageRank to itself.) In this way, N is similar in spirit to the adjacency
matrix M , but with a different definition when i links to j .

Now, let’s represent the PageRanks of all nodes using a vector r , where the coordinate
ri is the PageRank of node i. Using this notation, we can write the Basic PageRank
Update Rule as

ri ← N1ir1 + N2ir2 + · · · + Nnirn. (14.5)
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in Figure 14.13: we define Nij to be the share of i’s PageRank that j should get in one
update step. This means that Nij = 0 if i doesn’t link to j , and otherwise Nij is the
reciprocal of the number of nodes that i points to. In other words, when i links to j ,
then Nij = 1/ℓi , where ℓi is the number of links out of i. (If i has no outgoing links,
then we define Nii = 1, in keeping with the rule that a node with no outgoing links
passes all its PageRank to itself.) In this way, N is similar in spirit to the adjacency
matrix M , but with a different definition when i links to j .

Now, let’s represent the PageRanks of all nodes using a vector r , where the coordinate
ri is the PageRank of node i. Using this notation, we can write the Basic PageRank
Update Rule as
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Figure 14.14. The flow of PageRank under the Scaled PageRank Update Rule can also be
represented using a matrix derived from the adjacency matrix M (shown here with scaling
factor s = 0.8). We denote this matrix by Ñ; the entry Ñi j specifies the portion of i ’s PageRank
that should be passed to j in one update step.

This corresponds to multiplication by the transpose of the matrix, just as we saw for
the Authority Update Rule; thus, Equation (14.5) can be written as

r ← NT r. (14.6)

The Scaled PageRank Update Rule can be represented in essentially the same way,
but with a different matrix Ñ to represent the different flow of PageRank, as indicated in
Figure 14.14. Recall that, in the scaled version of the update rule, the updated PageRank
is scaled down by a factor of s, and the residual 1 − s units are divided equally over
all nodes. Thus, we can simply define Ñij to be sNij + (1 − s)/n, and then the scaled
update rule can be written as

ri ← Ñ1ir1 + Ñ2ir2 + · · · + Ñnirn (14.7)

or equivalently

r ← ÑT r. (14.8)

Repeated Improvement Using the Scaled PageRank Update Rule. As we apply the
scaled update rule repeatedly, starting from an initial PageRank vector r ⟨0⟩, we produce
a sequence of vectors r ⟨1⟩, r ⟨2⟩, . . . where each vector is obtained from the preceding
one via multiplication by ÑT . Thus, unwinding this process, we see that

r ⟨k⟩ = (ÑT )kr ⟨0⟩.

Moreover, since PageRank is conserved as it is updated – that is, the sum of the
PageRanks at all nodes remains constant through the application of the scaled update
rule – we don’t have to worry about normalizing these vectors as we proceed.

So by analogy with the limiting values of the hub–authority computation (but with
the added fact that normalization isn’t needed), one expects that if the Scaled PageRank
Update Rule converges to a limiting vector r ⟨∗⟩, this limit should satisfy ÑT r ⟨∗⟩ = r ⟨∗⟩;
that is, we should expect r ⟨∗⟩ to be an eigenvector of ÑT with corresponding eigenvalue
1. Such an r ⟨∗⟩ has the property that it does not change under further refinements by
the Scaled PageRank Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank
Update Rule converges to precisely such an r ⟨∗⟩. To prove this, however, we can’t use
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PageRanks at all nodes remains constant through the application of the scaled update
rule – we don’t have to worry about normalizing these vectors as we proceed.
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the Scaled PageRank Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank
Update Rule converges to precisely such an r ⟨∗⟩. To prove this, however, we can’t use
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but with a different matrix Ñ to represent the different flow of PageRank, as indicated in
Figure 14.14. Recall that, in the scaled version of the update rule, the updated PageRank
is scaled down by a factor of s, and the residual 1 − s units are divided equally over
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that is, we should expect r ⟨∗⟩ to be an eigenvector of ÑT with corresponding eigenvalue
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but with a different matrix Ñ to represent the different flow of PageRank, as indicated in
Figure 14.14. Recall that, in the scaled version of the update rule, the updated PageRank
is scaled down by a factor of s, and the residual 1 − s units are divided equally over
all nodes. Thus, we can simply define Ñij to be sNij + (1 − s)/n, and then the scaled
update rule can be written as

ri ← Ñ1ir1 + Ñ2ir2 + · · · + Ñnirn (14.7)

or equivalently

r ← ÑT r. (14.8)

Repeated Improvement Using the Scaled PageRank Update Rule. As we apply the
scaled update rule repeatedly, starting from an initial PageRank vector r ⟨0⟩, we produce
a sequence of vectors r ⟨1⟩, r ⟨2⟩, . . . where each vector is obtained from the preceding
one via multiplication by ÑT . Thus, unwinding this process, we see that

r ⟨k⟩ = (ÑT )kr ⟨0⟩.

Moreover, since PageRank is conserved as it is updated – that is, the sum of the
PageRanks at all nodes remains constant through the application of the scaled update
rule – we don’t have to worry about normalizing these vectors as we proceed.

So by analogy with the limiting values of the hub–authority computation (but with
the added fact that normalization isn’t needed), one expects that if the Scaled PageRank
Update Rule converges to a limiting vector r ⟨∗⟩, this limit should satisfy ÑT r ⟨∗⟩ = r ⟨∗⟩;
that is, we should expect r ⟨∗⟩ to be an eigenvector of ÑT with corresponding eigenvalue
1. Such an r ⟨∗⟩ has the property that it does not change under further refinements by
the Scaled PageRank Update Rule.

In fact, all this turns out to be true: repeated application of the Scaled PageRank
Update Rule converges to precisely such an r ⟨∗⟩. To prove this, however, we can’t use
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In fact, all this turns out to be true: repeated application of the Scaled PageRank
Update Rule converges to precisely such an r ⟨∗⟩. To prove this, however, we can’t use



Required reading: “Networks, Crowds, and 
Markets,” Chapter 13.1 — 13.4, 14.1 — 14.3, 
14.6



Final Examination
‣ December 15, 2023, BA 1180, 1:10pm - 3pm, 110 minutes 

‣ Covers all the lectures, but not the critique papers 

‣ Sample examination questions on the course website 

‣ Length: a bit longer than the sample exams 

‣ Format: the same — a large question divided into 2-3 small ones 

‣ Special Office Hour: December 11, Monday, 2-5pm, BA 4118
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Preparing for the final examination
‣ Strongly recommended: read the corresponding chapters in the 

textbook (in the course website) 

‣ Exercises at the end of each chapter will be very helpful 

‣ If this is not feasible, understand the examples in the lecture slides 

‣ Video recordings may help as well (though two were not available)
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Sneak preview: my new graduate course next Fall

‣ Tentatively titled “Performant Software Systems” 

‣ Covers how modern and high-performance software systems are 
built using the Rust programming language 

‣ Still pending review and approval
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